Pošto Mateju sama informacija o idealnom
nije jako korisna, pogotovo jer je vjerojatnost bilo kojeg specifičnog
nula (jer postoji neprebrojivo mnogo mogućih odabira za
), odlučio se zapitati koja je vjerojatnost da je
u intervalu
.
Podsjećamo vas da je Mateju taj bio nepoznat prije bacanja pa pretpostavlja da je vjerojatnost da je izabran bilo koji iz intervala jednaka. Zatim su se desila tri bacanja, te su završila s dva pisma i jednom glavom.
Odredi, iz Matejeve perspektive, koja je vjerojatnost da je .
Since the information about the ideal
is not very useful to Matej, especially because the probability of any specific
is zero (as there are uncountably many possible choices for
), he decided to ask what the probability is that
lies in the interval
.
We remind you that before the coin tosses, Matej did not know , so he assumes that the probability of choosing any from the interval is uniform. Then, three coin tosses occurred, resulting in two tails and one head.
Determine, from Matej's perspective, the probability that .
[lang=hr]
Pošto Mateju sama informacija o idealnom $p$ nije jako korisna, pogotovo jer je vjerojatnost bilo kojeg specifičnog $p$ nula (jer postoji neprebrojivo mnogo mogućih odabira za $p$), odlučio se zapitati koja je vjerojatnost da je $p$ u intervalu $[0.6, 0.7]$.
Podsjećamo vas da je Mateju taj $p$ bio nepoznat prije bacanja pa pretpostavlja da je vjerojatnost da je izabran bilo koji $p$ iz intervala $[0, 1]$ jednaka. Zatim su se desila tri bacanja, te su završila s dva pisma i jednom glavom.
Odredi, iz Matejeve perspektive, koja je vjerojatnost da je $0.6 \leq p \leq 0.7$.
[/lang]
[lang=en]
Since the information about the ideal $p$ is not very useful to Matej, especially because the probability of any specific $p$ is zero (as there are uncountably many possible choices for $p$), he decided to ask what the probability is that $p$ lies in the interval $[0.6, 0.7]$.
We remind you that before the coin tosses, Matej did not know $p$, so he assumes that the probability of choosing any $p$ from the interval $[0, 1]$ is uniform. Then, three coin tosses occurred, resulting in two tails and one head.
Determine, from Matej's perspective, the probability that $0.6 \leq p \leq 0.7$.
[/lang]