Vrijeme: 09:09

Nejednakosti puštene s lanca | Inequalities unleashed from the chain #2

Neka je C najmanja konstanta takva da, za sve realne brojeve a_1 \dots a_n vrijedi: \sum_{i=1}^n \sum_{j=1}^n \frac{a_ia_j}{i+j} \le C \cdot \sum_{k=1}^n a_k^2

Odredite cijeli broj najbliži broju 10000C.

Let C be the smallest constant such that for all real numbers a_1 \dots a_n, the following inequality holds: \sum_{i=1}^n \sum_{j=1}^n \frac{a_ia_j}{i+j} \le C \cdot \sum_{k=1}^n a_k^2

Determine the integer closest to 10000C.