Vrijeme: 04:59

Nejednakosti puštene s lanca | Inequalities unleashed from the chain #1

Neka je Z najveća konstanta takva da za sve realne x_1 \dots x_{100} vrijedi:

\sum_{1 \le i < j \le 100}(x_i-x_j)^2 \ge Z \sum_{1 \le i < j \le 15} (x_i-x_j)^2

Odredite cijeli broj najbliži broju 100Z.

Let Z be the largest constant such that for all real numbers x_1, \dots, x_{100}, the following inequality holds:

\sum_{1 \le i < j \le 100}(x_i-x_j)^2 \ge Z \sum_{1 \le i < j \le 15} (x_i-x_j)^2

Determine the integer closest to 100Z.