Vrijeme: 09:10

Sigma lanac | Sigma chain #1

Suma

\frac{3}{1!+2!+3!}+\frac{4}{2!+3!+4!}+\frac{5}{3!+4!+5!}+...+\frac{n}{(n-2)!+(n-1)!+(n)!}

može se zapisati kao 1/2-1/f(n), gdje je f(n) funkcija u n. Pokazuje se da je f(n) cjelobrojan, a mi vas pitamo da napišete najmanji n takav da je f(n) djeljiv s 2024. Ako takav ne postoji, vratite -1.

The sum

\frac{3}{1!+2!+3!}+\frac{4}{2!+3!+4!}+\frac{5}{3!+4!+5!}+...+\frac{n}{(n-2)!+(n-1)!+(n)!}

can be written as 1/2-1/f(n), where f(n) is a function of n. It has been shown that f(n) is an integer, and we ask you to find the smallest n such that f(n) is divisible by 2024. If no such n exists, return -1.