U trokutu
vrijedi
,
,
. Neka je
polovište stranice
,
točka na
tako da je
simetrala
. Neka je
točka na
takva da je
. Neka je
. Nađi
. Odgovor zaokruži na
decimale.
In
,
,
, and
. Let
be the midpoint of
, and let
be the point on
such that
bisects angle
. Let
be the point on
such that
. Suppose that
meets
at
. Find
and round your solution to
decimal places.
[lang=hr]
U trokutu $ABC$ vrijedi $AB=360$, $BC=507$, $CA=780$. Neka je $M$ polovište stranice $\overline{CA}$, $D$ točka na $\overline{CA}$ tako da je $\overline{BD}$ simetrala $\angle ABC$. Neka je $E$ točka na $\overline{BC}$ takva da je $DE \perp BD$. Neka je $F=DE \cap BM$. Nađi $\frac{DF}{EF}$. Odgovor zaokruži na $3$ decimale.
[/lang]
[lang=en]
In $\triangle ABC$, $AB = 360$, $BC = 507$, and $CA = 780$. Let $M$ be the midpoint of $\overline{CA}$, and let $D$ be the point on $\overline{CA}$ such that $\overline{BD}$ bisects angle $ABC$. Let $E$ be the point on $\overline{BC}$ such that $\overline{DE} \perp \overline{BD}$. Suppose that $\overline{DE}$ meets $\overline{BM}$ at $F$. Find $\frac{DF}{EF}$ and round your solution to $3$ decimal places.
[/lang]