U trokutu

vrijedi

,

,

. Neka je

polovište stranice

,

točka na

tako da je

simetrala

. Neka je

točka na

takva da je

. Neka je

. Nađi

. Odgovor zaokruži na

decimale.
In

,

,

, and

. Let

be the midpoint of

, and let

be the point on

such that

bisects angle

. Let

be the point on

such that

. Suppose that

meets

at

. Find

and round your solution to

decimal places.
[lang=hr]
U trokutu $ABC$ vrijedi $AB=360$, $BC=507$, $CA=780$. Neka je $M$ polovište stranice $\overline{CA}$, $D$ točka na $\overline{CA}$ tako da je $\overline{BD}$ simetrala $\angle ABC$. Neka je $E$ točka na $\overline{BC}$ takva da je $DE \perp BD$. Neka je $F=DE \cap BM$. Nađi $\frac{DF}{EF}$. Odgovor zaokruži na $3$ decimale.
[/lang]
[lang=en]
In $\triangle ABC$, $AB = 360$, $BC = 507$, and $CA = 780$. Let $M$ be the midpoint of $\overline{CA}$, and let $D$ be the point on $\overline{CA}$ such that $\overline{BD}$ bisects angle $ABC$. Let $E$ be the point on $\overline{BC}$ such that $\overline{DE} \perp \overline{BD}$. Suppose that $\overline{DE}$ meets $\overline{BM}$ at $F$. Find $\frac{DF}{EF}$ and round your solution to $3$ decimal places.
[/lang]