Vrijeme: 05:09

Boris is my name, geometry is my game | Boris is my name, geometry is my game #2

U trokutu ABC vrijedi AB=360, BC=507, CA=780. Neka je M polovište stranice \overline{CA}, D točka na \overline{CA} tako da je \overline{BD} simetrala \angle ABC. Neka je E točka na \overline{BC} takva da je DE \perp BD. Neka je F=DE \cap BM. Nađi \frac{DF}{EF}. Odgovor zaokruži na 3 decimale.
In \triangle ABC, AB = 360, BC = 507, and CA = 780. Let M be the midpoint of \overline{CA}, and let D be the point on \overline{CA} such that \overline{BD} bisects angle ABC. Let E be the point on \overline{BC} such that \overline{DE} \perp \overline{BD}. Suppose that \overline{DE} meets \overline{BM} at F. Find \frac{DF}{EF} and round your solution to 3 decimal places.