Neka je

raznostranični trokut. Njemu upisana kružnica dodiruje stranice

,

i

u točkama

,

i

redom. Pripisana kružnica nasuprot vrha

dodiruje pravce

,

i

u točkama

,

i

, respektivno. Pretpostavimo da se pravci

,

, and

sijeku u točki

i da se pravci

,

, and

sijeku u točki

.Pravac

siječe unutarnju simetralu kuta

u točki

. Pretpostavimo da je

,

i da je
![BC=8\sqrt[4]{3}](/media/m/6/d/a/6da270833cac12cdbe8e99b612dcc3c0.png)
. Nađi

. Odgovor zaokruži na

decimale.
Let

be a scalene triangle. The circle inscribed in it touches the sides

,

and

at the points

,

and

respectively. The escribed circle opposite to vertex

touches lines

,

, and

at points

,

, and

, respectively. Assume that lines

,

, and

intersect at point

and that lines

,

, and

intersect at point

. Line

intersects the interior bisector of angle

at point

. Assume that

,

and that
![BC=8\sqrt[4]{3}](/media/m/6/d/a/6da270833cac12cdbe8e99b612dcc3c0.png)
. Find

. Round the answer to 4 decimal places.
[lang=hr]
Neka je $ABC$ raznostranični trokut. Njemu upisana kružnica dodiruje stranice $BC$, $AC$ i $AB$ u točkama $A_1$, $B_1$ i $C_1$ redom. Pripisana kružnica nasuprot vrha $A$ dodiruje pravce $BC$, $AC$ i $AB$ u točkama $A_2$, $B_2$ i $C_2$, respektivno. Pretpostavimo da se pravci $AA_1$, $BB_1$, and $CC_1$ sijeku u točki $G$ i da se pravci $AA_2$, $BB_2$, and $CC_2$ sijeku u točki $G'$.Pravac $GG'$ siječe unutarnju simetralu kuta $\angle BAC$ u točki $T$. Pretpostavimo da je $AT=1$, $\cos{\angle BAC}=\sqrt{3}-1$ i da je $BC=8\sqrt[4]{3}$. Nađi $AB \cdot AC$. Odgovor zaokruži na $4$ decimale.
[/lang]
[lang=en]
Let $ABC$ be a scalene triangle. The circle inscribed in it touches the sides $BC$, $AC$ and $AB$ at the points $A_1$, $B_1$ and $C_1$ respectively. The escribed circle opposite to vertex $A$ touches lines $BC$, $AC$, and $AB$ at points $A_2$, $B_2$, and $C_2$, respectively. Assume that lines $AA_1$, $BB_1$, and $CC_1$ intersect at point $G$ and that lines $AA_2$, $BB_2$, and $CC_2$ intersect at point $G'$. Line $GG' $ intersects the interior bisector of angle $\angle BAC$ at point $T$. Assume that $AT=1$, $\cos{\angle BAC}=\sqrt{3}-1$ and that $BC=8\sqrt[4]{3}$. Find $AB \cdot AC$. Round the answer to 4 decimal places.
[/lang]