Zadan je trokut

. Neka su

i

točke na stranici

takve da vrijedi

. Neka je

polovište stranice

. Pravac

siječe

u točki

, a

u točki

. Odredite omjer površine trokuta

i četverokuta

. Napišite odgovor u obliku razlomka poput

.
Let

be a triangle. Let

be points on the segment

such that

. Let

be the mid-point of

. Let

intersect

in

and

in

respectively. Determine the ratio of the area of the triangle

to that of the quadrilateral

. Write the answer in fraction form like a/b.
[lang=hr]
Zadan je trokut $ABC$. Neka su $D$ i $E$ točke na stranici $BC$ takve da vrijedi $BD=DE=EC$. Neka je $F$ polovište stranice $AC$. Pravac $BF$ siječe $AD$ u točki $P$, a $AE$ u točki $Q$. Odredite omjer površine trokuta $APQ$ i četverokuta $PDEQ$. Napišite odgovor u obliku razlomka poput $a/b$.
[/lang]
[lang=en]
Let $ABC$ be a triangle. Let $D,E$ be points on the segment $BC$ such that $BD=DE=EC$. Let $F$ be the mid-point of $AC$. Let $BF$ intersect $AD$ in $P$ and $AE$ in $Q$ respectively. Determine the ratio of the area of the triangle $APQ$ to that of the quadrilateral $PDEQ$. Write the answer in fraction form like a/b.
[/lang]