U pravokutni trokut

s duljinom kateta

i

, upisan je kvadrat

s dva susjedna vrha

,

na hipotenuzi

(tako da je

bliže

) i po jednim vrhom

i

na katetama

i

. Izračunajte

.
In a right triangle

with legs of lengths

and

, a square

is inscribed such that two consecutive vertices

and

lie on the hypotenuse

(so that

is closer to

), and the other two vertices

and

lie on the legs

and

, respectively. Calculate

.
[lang=hr]
U pravokutni trokut $ABC$ s duljinom kateta $3$ i $4$, upisan je kvadrat $DEFG$ s dva susjedna vrha $D$, $E$ na hipotenuzi $\overline{AB}$ (tako da je $D$ bliže $A$) i po jednim vrhom $F$ i $G$ na katetama $\overline{BC}$ i $\overline{CA}$. Izračunajte $\left\vert AD \right\vert \cdot \left\vert BE \right\vert$.
[/lang]
[lang=en]
In a right triangle $ABC$ with legs of lengths $3$ and $4$, a square $DEFG$ is inscribed such that two consecutive vertices $D$ and $E$ lie on the hypotenuse $\overline{AB}$ (so that $D$ is closer to $A$), and the other two vertices $F$ and $G$ lie on the legs $\overline{BC}$ and $\overline{CA}$, respectively. Calculate $\left\vert AD \right\vert \cdot \left\vert BE \right\vert$.
[/lang]