Vrijeme: 05:18

Strelice | Arrows #3

Odredite \lambda  \in  \mathbb{R} tako da je volumen paralelepipeda razapetog vektorima \vec{a}=\vec{i}+\vec{j}, \vec{b}=\vec{i}+\vec{ \lambda k}, \vec{c}=\vec{j}+\vec{k} jednak 2. Rješenja odvojite zarezom, uzlazno sortrano.
Determine \lambda \in \mathbb{R} such that the volume of the parallelepiped spanned by the vectors \vec{a}=\vec{i} + \vec{j}, \vec{b}=\vec{i} + \lambda \vec{k}, \vec{c}=\vec{j} + \vec{k} is equal to 2. Provide the solutions separated by commas, sorted in ascending order.