Vrijeme: 05:08

Strelice | Arrows #1

Dani su vektori \vec{a}=\vec{xi}+\vec{j}+\vec{2k}, \vec{b}=\vec{i}+\vec{yj}+\vec{k}, \vec{c}=\vec{-i}. Odredite x, y \in \mathbb{R} takve da su udaljenosti vektora (\vec{a}, \vec{b}), (\vec{b}, \vec{c}), (\vec{c}, \vec{a}) redom \sqrt {17}, \sqrt{6}, 3.
Given the vectors \vec{a}=\vec{xi}+\vec{j}+\vec{2k}, \vec{b}=\vec{i}+\vec{yj}+\vec{k}, \vec{c}=\vec{-i}, determine x, y \in \mathbb{R} such that the distances between the vectors (\vec{a}, \vec{b}), (\vec{b}, \vec{c}), (\vec{c}, \vec{a}) are \sqrt{17}, \sqrt{6}, and 3, respectively.