Vrijeme: 09:02

Američka pita | American pie #3

Neka je a_0, a_1 \dots jedinstveni niz cijelih brojeva za koje je:

\tan2023x = \frac{a_1 \tan x + a_3 \tan^3 x + a_5 \tan^5 x + \cdots + a_{2023} \tan^{2023} x}{1 + a_2 \tan^2 x + a_4 \tan^4 x \cdots + a_{2022} \tan^{2022} x}

kad god je lijeva strana definirana. Nađite a_{2023}

Here's the translated math problem in English:

Let a_0, a_1, \dots be a unique sequence of integers such that:

\tan2023x = \frac{a_1 \tan x + a_3 \tan^3 x + a_5 \tan^5 x + \cdots + a_{2023} \tan^{2023} x}{1 + a_2 \tan^2 x + a_4 \tan^4 x + \cdots + a_{2022} \tan^{2022} x}

whenever the left side is defined. Find a_{2023}.