Dan je trokut
s ortocentrom
i središtem opisane kružnice
.
je presjek simetrale kuta
i opisane kružnice trokuta. Ako je
, odredi
.
Let
be a triangle with circumcircle
, and let
,
be the triangle’s circumcenter and orthocenter respectively. Let also
be the point where the angle bisector of the angle
meets
. If
, then find the measure of the angle
.
[lang=hr]
Dan je trokut $EMA$ s ortocentrom $H$ i središtem opisane kružnice $O$. $M'$ je presjek simetrale kuta $\angle{EMA}$ i opisane kružnice trokuta. Ako je $|MH| = |M'H|$, odredi $\angle{EMA}$.
[/lang]
[lang=en]
Let $EMA$ be a triangle with circumcircle $\omega$, and let $O$, $H$ be the triangle’s circumcenter and orthocenter respectively. Let also $M'$ be the point where the angle bisector of the angle $\angle{EMA}$ meets $\omega$. If $|MH| = |M'H|$, then find the measure of the angle $\angle{EMA}$.
[/lang]