Dan je trokut

s ortocentrom

i središtem opisane kružnice

.

je presjek simetrale kuta

i opisane kružnice trokuta. Ako je

, odredi

.
Let

be a triangle with circumcircle

, and let

,

be the triangle’s circumcenter and orthocenter respectively. Let also

be the point where the angle bisector of the angle

meets

. If

, then find the measure of the angle

.
[lang=hr]
Dan je trokut $EMA$ s ortocentrom $H$ i središtem opisane kružnice $O$. $M'$ je presjek simetrale kuta $\angle{EMA}$ i opisane kružnice trokuta. Ako je $|MH| = |M'H|$, odredi $\angle{EMA}$.
[/lang]
[lang=en]
Let $EMA$ be a triangle with circumcircle $\omega$, and let $O$, $H$ be the triangle’s circumcenter and orthocenter respectively. Let also $M'$ be the point where the angle bisector of the angle $\angle{EMA}$ meets $\omega$. If $|MH| = |M'H|$, then find the measure of the angle $\angle{EMA}$.
[/lang]