Vrijeme: 05:06

Familija | Family #3

Dan je trokut EMA s ortocentrom H i središtem opisane kružnice O. M' je presjek simetrale kuta \angle{EMA} i opisane kružnice trokuta. Ako je |MH| = |M'H|, odredi \angle{EMA}.
Let EMA be a triangle with circumcircle \omega, and let O, H be the triangle’s circumcenter and orthocenter respectively. Let also M' be the point where the angle bisector of the angle \angle{EMA} meets \omega. If |MH| = |M'H|, then find the measure of the angle \angle{EMA}.