Vrijeme: 05:19

HFMO | HFMO #6

Neka je \sigma: \mathbb{R}^+ \rightarrow \mathbb{R}^+ funkcija za koju vrijedi \sigma(3x) \geq \sigma(\sigma(2x)) + x \quad ,\forall x > 0 Odredite najveći \alpha \in \mathbb{R} za koji vrijedi \sigma(x) \geq \alpha x \quad \forall x > 0
Let \sigma: \mathbb{R}^+ \rightarrow \mathbb{R}^+ be a function such that: \sigma(3x) \geq \sigma(\sigma(2x)) + x, \quad \forall x > 0. Determine the largest \alpha \in \mathbb{R} such that: \sigma(x) \geq \alpha x \quad \forall x > 0.