Vrijeme: 11:07

Funkcije u N | Functions in N #2

Ako je n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k ^{\alpha_k} definiramo funkciju f : \mathbb N \to \mathbb N kao f(n) = \prod_{i = 1}^{k} \varphi (p_i) ^{\varphi (\alpha_i)}

Odredi \sum_{n = 1}^{707} v_{707}(f(n!)).

If n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}, we define a function f : \mathbb{N} \to \mathbb{N} as f(n) = \prod_{i = 1}^{k} \varphi (p_i) ^{\varphi (\alpha_i)}

Determine \sum_{n = 1}^{707} v_{707}(f(n!)).