Vrijeme: 11:07

TRIGgggering nejednakosti | TRIGgggering inequalities #3

Ajme što je bio ovaj prijašnji zadatak??. Ajde još nisam pao u nesvijest, idemo vidjeti može li me sljedeći zadatak nokautirati. Možda i može...

Neka su \alpha,\beta,\gamma kutovi netupokutnog trokuta, a R i r polumjeri njemu opisane i upisane kružnice. Nađi najveći x tako da uvijek vrijedi nejednakost \sec\alpha+\sec\beta+\sec\gamma\geq\frac{xR}{R+r}. U polje za odgovore upiši x^2. Ako je x^2 razlomak zapiši ga u skraćenom obliku a/b te u polje upiši umnožak a\cdot b. Ako je rezultat koji bi upisao u polje jako velik izračunaj njegov ostatak pri dijeljenju s 1000007.

What was that previous problem? Come on, I haven’t fainted yet; let’s see if the next problem can knock me out. Maybe it can…

Let \alpha,\beta,\gamma be the angles of an acute‑angled triangle, and let R and r be the radii of its circumcircle and incircle, respectively. Find the largest constant x such that the inequality

\sec\alpha+\sec\beta+\sec\gamma \ge \frac{xR}{R+r}

holds for every acute‑angled triangle.

Enter x^{2} in the answer box. If x^{2} is a fraction, write it in lowest terms as \displaystyle\frac{a}{b} and then enter the product a\cdot b in the answer box. If the resulting number is very large, compute its remainder modulo 1000007.