Vrijeme: 11:06

TRIGgggering nejednakosti | TRIGgggering inequalities #4

Nedaaa mi se više!! Kolikooo još imam???. geeez još dva zadatka. Ajde jedan brzinski cofffffe break pa ću nastavit

..................................................................................................................................................................................

Ok idemoo daljeee! Ili možda bolje ne...

Odredite maksimum funkcije f(x)=\sin^{2025}x\cos x

Za odgovor na ovaj zadatak za taj x za koji se postiže maksimalna vrijednost izračunajte f(x)^2. Koji god broj dobijete pretvorite ga u potpuno skraćeni oblik razlomka \frac{a}{b}.(znači ako je cijeli broj, b=1, a a je jednak tom cijelom broju)

Izračunajte a+b. Ako je broj jako velik zapišite njegov ostatak pri dijeljenju s 1000007.

I don’t feel like doing anything anymore!! How many more do I have??? Geez, two more problems. Let’s take a quick coffee break and then I’ll continue. .............................................................................................................................................................................. Okay, I’m moving on! Or maybe it’s better not to…

Determine the maximum of the function f(x)=\sin^{2025}x\cos x

For the value of x at which the maximum is attained, compute f(x)^2. Write whatever number you obtain as a fully reduced fraction \dfrac{a}{b} (so if it is an integer, set b=1 and a equals that integer).

Calculate a + b. If the number is very large, give its remainder upon division by 1000007.