Vrijeme: 11:06

From Cyprus, with love #3

Ako \sin x + \sin y =\frac{1}{2} \quad \cos x - \cos y=\frac{1}{3} Koliko je \cos(x+y)?

Rješenje zapiši u ovliku \frac{a}{b} pri ćemu su a i b relativno prosti cijeli brojevi. Kao odgovor na ovo pitanje zapiši a+b.

If \sin x + \sin y = \frac{1}{2} \qquad \cos x - \cos y = \frac{1}{3} what is \cos(x+y)?

Write the solution in the form \frac{a}{b} where a and b are relatively prime integers. As the answer to this question, write a+b.