Vrijeme: 11:06

From Georgia, with love #4

Dana je 2023 \times 2023 ploča u kojoj su sva polja obojana ili crveno ili crno prema sljedećim pravilima: \begin{itemize}
\item Svaki red ima različit broj crvenih polja
\item Svaki stupac ima različit broj crnih polja.
\end{itemize} Na koliko različitih načina možemo obojati ploču?

Rješenje zapiši u obliku a\cdot (b!)^c te kao odgovor na ovo pitanje napiši a+b+c

Consider a 2023 \times 2023 board whose cells are colored either red or black according to the following rules:

\begin{itemize} 
\item Each row contains a distinct number of red cells. \item Each column contains a distinct number of black cells. 
\end{itemize}

In how many different ways can the board be colored?

Write the solution in the form a\cdot (b!)^c, and as the answer to this question give a+b+c.