Vrijeme: 11:06

Lovegebra #4

Sada su potrebna još dva bomba zadatka, a prvi od tih je:

Niz a_n zadan je rekurzivno sa a_0=-1 a_n=\frac{2a_{n-1}-3}{3a_{n-1}-4}, \quad n\in \mathbb{N}

Odredi a_{100} (rješenje zapiši u oliku \frac{a}{b} gdje su a i b relativno prosti cijeli brojevi. Kao odgovor na ovo pitanje napiši a+b)

Now two more “bomb” problems are required, and the first of them is:

The sequence a_n is defined recursively by

a_0=-1 a_n=\frac{2a_{n-1}-3}{3a_{n-1}-4}, \quad n\in \mathbb{N}

Find a_{100}. (Write the solution in the form \frac{a}{b} where a and b are relatively prime integers. As the answer to this question, submit a+b.)