Vrijeme: 11:06

Lovegebra #5

Za svoj finalni zadatak, Ivica mora biti siguran da će Maricu oborit s nogu. Upravo zato, smislio je najljepši i najteži zadatak do sasd te on glasi ovako:

Neka m bude najveće realno rješenje sljedeće jednadžbe: \frac{5}{x-5}+\frac{7}{x-7}+\frac{17}{x-17}+\frac{19}{x-19}=x^2-12x-4

Taj m se može zapisati kao a+\sqrt{b+\sqrt{c}} pri ćemu su a,b,c cijeli brojevi. Koliko je a+b+c?

For his final assignment, Ivica wants to be absolutely sure that Marica will fall for him. Therefore, he devised the most beautiful and hardest problem ever, which reads as follows:

Let m be the largest real solution of the equation

\frac{5}{x-5}+\frac{7}{x-7}+\frac{17}{x-17}+\frac{19}{x-19}=x^{2}-12x-4 .

This number m can be expressed in the form a + \sqrt{b + \sqrt{c}} where a, b, and c are integers. Find the value of a + b + c.