Vrijeme: 11:06

Netko će me vjerojatno izbaciti iz MNM-a. | Somebody will probably kick me out of MNM. #2

Martin je pozvao Hrvoja na razgovor i rekao mu da je jako bitno da ga dobro sasluša. Hrvoje je odmah uzeo papir i olovku kako bi zapisao Martinove važne riječi.

Dok je Martin pričao, Hrvoje je na papiru crtao zvijezde.

Konkretno, Hrvoje je s jednakom vjerojatnošću odabrao prirodni broj s od 1 do 1012 (uključno). Zatim je nacrtao konveksni 2025-terokut i u smjeru kazaljke na satu numerirao njegove vrhove od 0 do n - 1. Hrvoje kreće iz i_0-tog vrha 2025-terokuta i spaja taj vrh s vrhom čiji broj odgovara broju i_1 = i_0 + s \pmod{2025}. Zatim kreće iz vrha i_1 i ponavlja taj postupak dok ne dođe do vrha u kojem je već bio. Općenito vrijedi i_{n + 1} = i_n + s \pmod{2025}. Kolika je vjerojatnost da će proći kroz svih n vrhova, tj. da će se zaustaviti u točki i_0.

Napomena: svi rezultati dobiveni modulom su u rasponu od 0 do 2024 (uključno).

Martin invited Hrvoje for a conversation and told him it was very important that he listen carefully. Hrvoje immediately took a piece of paper and a pencil to write down Martin's important words.

While Martin was talking, Hrvoje was drawing stars on the paper.

Specifically, Hrvoje chose a natural number s uniformly at random from 1 to 1012 (inclusive). Then he drew a convex 2025-gon and numbered its vertices clockwise from 0 to n - 1. Hrvoje starts from vertex i_0 of the 2025-gon and connects that vertex to the vertex whose number is i_1 = i_0 + s \pmod{2025}. Then, starting from vertex i_1, he repeats this process until he reaches a vertex he has already visited. In general, it holds that i_{n + 1} = i_n + s \pmod{2025}. Determine the probability that he will pass through all n vertices, i.e., that he will stop again at the starting vertex i_0.

Note: All results obtained modulo are in the range from 0 to 2024 (inclusive).