Neocijenjeno
20. kolovoza 2017. 12:31 (7 godine, 6 mjeseci)
In a plane the circles

and

with centers

and

, respectively, intersect in two points

and

. Assume that

is obtuse. The tangent to

in

intersects

again in

and the tangent to

in

intersects

again in

. Let

be the circumcircle of the triangle

. Let

be the midpoint of that arc

of

that contains

. The lines

and

intersect

again in

and

, respectively. Prove that the line

is perpendicular to

.
%V0
In a plane the circles $\mathcal K_1$ and $\mathcal K_2$ with centers $I_1$ and $I_2$, respectively, intersect in two points $A$ and $B$. Assume that $\angle I_1AI_2$ is obtuse. The tangent to $\mathcal K_1$ in $A$ intersects $\mathcal K_2$ again in $C$ and the tangent to $\mathcal K_2$ in $A$ intersects $\mathcal K_1$ again in $D$. Let $\mathcal K_3$ be the circumcircle of the triangle $BCD$. Let $E$ be the midpoint of that arc $CD$ of $\mathcal K_3$ that contains $B$. The lines $AC$ and $AD$ intersect $\mathcal K_3$ again in $K$ and $L$, respectively. Prove that the line $AE$ is perpendicular to $KL$.
Upozorenje: Ovaj zadatak još niste riješili!
Kliknite ovdje kako biste prikazali rješenje.
Neka su

. Zbog kuta tangente i tetive

i

Analogno

Iz

i

a budući da vrijedi i

imamo da je

središte opisane kružnice

.
Četverokut

je tetivan, pa vrijedi

Nadalje
%V0
Neka su $ \sphericalangle DAC = \alpha \,\, \sphericalangle ADC = \omega$. Zbog kuta tangente i tetive $ \Rightarrow \sphericalangle DAB = \sphericalangle ACB$ i $ \sphericalangle BAC = \sphericalangle ADB$ $$ \Rightarrow \sphericalangle ABC = 180\, -\, \sphericalangle BAC + \sphericalangle BCA = 180\, -\, \sphericalangle BAC + \sphericalangle BAD =
180\, -\, \sphericalangle DAC = 180\, -\, \alpha \qquad \textbf{(1)}$$ Analogno $$ \Rightarrow \sphericalangle DBA = 180\, - \, \alpha \qquad \textbf{(2)}$$ Iz $\textbf{(1)}$ i $\textbf{(2)}$ $ \Rightarrow \sphericalangle DBC = 2 \alpha = \sphericalangle DEC$ a budući da vrijedi i $ |DE| = |EC|$ imamo da je $E$ središte opisane kružnice $\triangle ACD$.
Četverokut $CDKL$ je tetivan, pa vrijedi $$ \sphericalangle LDC = 180 - \omega \Rightarrow \sphericalangle LKC = \omega$$ Nadalje $$\sphericalangle AEC = 2 \omega \Rightarrow \sphericalangle EAC = 90 - \omega = \sphericalangle EAK \Rightarrow AE \bot KL \qquad \qquad \textbf{q.e.d}$$