Točno
13. ožujka 2018. 22:02 (6 godine, 8 mjeseci)
Let A = (a_1, a_2, \ldots, a_{2001}) be a sequence of positive integers. Let m be the number of 3-element subsequences (a_i,a_j,a_k) with 1 \leq i < j < k \leq 2001, such that a_j = a_i + 1 and a_k = a_j + 1. Considering all such sequences A, find the greatest value of m.
Upozorenje: Ovaj zadatak još niste riješili!
Kliknite ovdje kako biste prikazali rješenje.

Ocjene: (1)