Točno
26. svibnja 2022. 17:10 (2 godine, 7 mjeseci)
Let ABC be a trapezoid with parallel sides AB > CD. Points K and L lie on the line segments AB and CD, respectively, so that \frac {AK}{KB} = \frac {DL}{LC}. Suppose that there are points P and Q on the line segment KL satisfying \angle{APB} = \angle{BCD} and \angle{CQD} = \angle{ABC}. Prove that the points P, Q, B and C are concylic.
Upozorenje: Ovaj zadatak još niste riješili!
Kliknite ovdje kako biste prikazali rješenje.

Ocjene: (1)



Komentari:

sladak zadatak :3
Da, iako je meni puno draze ono homotetija rjesenje

sladak zadatak :3

Zadnja promjena: binkret, 26. svibnja 2022. 22:04