Točno
19. prosinca 2022. 13:05 (2 godine, 3 mjeseci)
Let
be an isosceles triangle with
, whose incentre is
. Let
be a point on the circumcircle of the triangle
lying inside the triangle
. The lines through
parallel to
and
meet
at
and
, respectively. The line through
parallel to
meets
and
at
and
, respectively. Prove that the lines
and
intersect on the circumcircle of the triangle
.
comment
(According to my team leader, last year some of the countries wanted a geometry question that was even easier than this...that explains IMO 2003/4...)
[Note by Darij: This was also Problem 6 of the German pre-TST 2004, written in December 03.]
Edited by Orl.





















comment
(According to my team leader, last year some of the countries wanted a geometry question that was even easier than this...that explains IMO 2003/4...)
[Note by Darij: This was also Problem 6 of the German pre-TST 2004, written in December 03.]
Edited by Orl.
Upozorenje: Ovaj zadatak još niste riješili!
Kliknite ovdje kako biste prikazali rješenje.
Kliknite ovdje kako biste prikazali rješenje.
Neka je presjek
i
. Dokazat ćemo da je
na
i na
. (Motivacija za to je činjenica da su
i
homotetični pa se
i
sijeku u jednoj točki, pa ako zadatak vrijedi to će morati biti traženi presjek.)
Zbog simetrije dovoljno je da je na
. Imamo:
, odakle je
tetivan, a kako je
jednakokračni trapez i
leži na toj kružnici. Sličan chase daje i tetivnost
. Sada,
što smo i trebali.
P.S. Dosta lagano za jedan G5, nakon nacrtane slike mislim da se i bez ovog argumenta homotetijom može naslutiti gdje će biti ta točka presjeka i od tamo je chase dosta lagan. Ako se usmjere kutevi može se dobiti da zadatak vrijedi i za izvan