Točno
19. prosinca 2022. 13:05 (1 godina, 11 mjeseci)
Let be an isosceles triangle with , whose incentre is . Let be a point on the circumcircle of the triangle lying inside the triangle . The lines through parallel to and meet at and , respectively. The line through parallel to meets and at and , respectively. Prove that the lines and intersect on the circumcircle of the triangle .
comment
(According to my team leader, last year some of the countries wanted a geometry question that was even easier than this...that explains IMO 2003/4...)
[Note by Darij: This was also Problem 6 of the German pre-TST 2004, written in December 03.]
Edited by Orl.
comment
(According to my team leader, last year some of the countries wanted a geometry question that was even easier than this...that explains IMO 2003/4...)
[Note by Darij: This was also Problem 6 of the German pre-TST 2004, written in December 03.]
Edited by Orl.
Upozorenje: Ovaj zadatak još niste riješili!
Kliknite ovdje kako biste prikazali rješenje.
Kliknite ovdje kako biste prikazali rješenje.
Neka je presjek i . Dokazat ćemo da je na i na . (Motivacija za to je činjenica da su i homotetični pa se i sijeku u jednoj točki, pa ako zadatak vrijedi to će morati biti traženi presjek.)
Zbog simetrije dovoljno je da je na . Imamo: , odakle je tetivan, a kako je jednakokračni trapez i leži na toj kružnici. Sličan chase daje i tetivnost . Sada, što smo i trebali.
P.S. Dosta lagano za jedan G5, nakon nacrtane slike mislim da se i bez ovog argumenta homotetijom može naslutiti gdje će biti ta točka presjeka i od tamo je chase dosta lagan. Ako se usmjere kutevi može se dobiti da zadatak vrijedi i za izvan