Točno
Oct. 7, 2023, 10:42 p.m. (11 months, 1 week)
Let
be an acute triangle with
the feet of the altitudes lying on
respectively. One of the intersection points of the line
and the circumcircle is
The lines
and
meet at point
Prove that
Proposed by Christopher Bradley, United Kingdom
%V0
Let $ABC$ be an acute triangle with $D, E, F$ the feet of the altitudes lying on $BC, CA, AB$ respectively. One of the intersection points of the line $EF$ and the circumcircle is $P.$ The lines $BP$ and $DF$ meet at point $Q.$ Prove that $AP = AQ.$
Proposed by Christopher Bradley, United Kingdom
Warning: You haven't solved this problem yet.
Click here to display the solution.
Četverokut $APBC$ je tetivan.
Što znaći da je $\angle APQ = \angle C$
Oznaćimo s $H$ ortocentar trokuta.
Tada je
$$\angle C = \angle EHA = \angle DHB$$
Sad odavde imamo da je
$$\angle HBC = \angle HAC = 90 - \angle C$$
Iz tetivnih četverokuta $AEHF$ i $FHDB$ imamo da je
$\angle EFD = 180 - 2\angle C$ i da je $\angle DFB = \angle C$. Iz toga da je $\angle AFP = \angle DFB$ imamo da je četverokut $AFPQ$ tetivan.
A sad iz $\angle C = \angle AFE = \angle PFB = \angle AQP$ slijedi tvrdnja zadatka.
Sept. 3, 2024, 4:34 p.m. | loki6 | Točno |