Let be the circumcenter of an acute triangle . Line intersects the altitudes of through and at and , respectively. The altitudes meet at . Prove that the circumcenter of triangle lies on a median of triangle .
Let $O$ be the circumcenter of an acute triangle $ABC$. Line $OA$ intersects the altitudes of $ABC$ through $B$ and $C$ at $P$ and $Q$, respectively. The altitudes meet at $H$. Prove that the circumcenter of triangle $PQH$ lies on a median of triangle $ABC$.
Upozorenje: Ovaj zadatak još niste riješili! Kliknite ovdje kako biste prikazali rješenje.
Ukratko to je samo humpty tocka(bar mi se tako cini).
Ukratko to je samo humpty tocka(bar mi se tako cini).