Točno
23. svibnja 2012. 10:26 (12 godine, 6 mjeseci)
Upozorenje: Ovaj zadatak još niste riješili!
Kliknite ovdje kako biste prikazali rješenje.
Kliknite ovdje kako biste prikazali rješenje.
Zadatak smatram izrazito teškim za srednju školu jer nisam uspio naći rješenje koje ne zahtijeva poznavanje diferencijalnog računa.
Pramen pravaca kroz točku određen je jednadžbom , a sjecišta zadane hiperbole i tih pravaca su rješenja sustava jednadžbi
Jasno je da tražimo za koji postiže najmanju vrijednost. S obzirom da i postiže najmanju vrijednost za isti dovoljno je promatrati
Rješavajući gore navedeni sustav jednadžbi dolazimo do
Za , odnosno , imamo odakle je , odnosno ili .
Za dobijemo pa je
U ovom trenutku možemo odabrati mukotrpno deriviranje složene funkcije ili pomoć nekog alata, npr. Wolfram Alphe.
Ove dvije funkcije postižu minimume (za ) i približno (za ):
1) http://www.wolframalpha.com/input/?i=minimum+%28k%5E2+%2B+1%29+%2F+%283+-+4k%5E2%29%5E2+*+%2820k+-+6+%2B+4Sqrt%5B3%5DSqrt%5B7+-+5k%5D%29%5E2
2) http://www.wolframalpha.com/input/?i=minimum+%28k%5E2+%2B+1%29+%2F+%283+-+4k%5E2%29%5E2+*+%2820k+-+6+-+4Sqrt%5B3%5DSqrt%5B7+-+5k%5D%29%5E2.
Sada je jasno da je točki najbliža točka (odgovara slučaju ) i da je njihova udaljenost .
Pramen pravaca kroz točku određen je jednadžbom , a sjecišta zadane hiperbole i tih pravaca su rješenja sustava jednadžbi
Jasno je da tražimo za koji postiže najmanju vrijednost. S obzirom da i postiže najmanju vrijednost za isti dovoljno je promatrati
Rješavajući gore navedeni sustav jednadžbi dolazimo do
Za , odnosno , imamo odakle je , odnosno ili .
Za dobijemo pa je
U ovom trenutku možemo odabrati mukotrpno deriviranje složene funkcije ili pomoć nekog alata, npr. Wolfram Alphe.
Ove dvije funkcije postižu minimume (za ) i približno (za ):
1) http://www.wolframalpha.com/input/?i=minimum+%28k%5E2+%2B+1%29+%2F+%283+-+4k%5E2%29%5E2+*+%2820k+-+6+%2B+4Sqrt%5B3%5DSqrt%5B7+-+5k%5D%29%5E2
2) http://www.wolframalpha.com/input/?i=minimum+%28k%5E2+%2B+1%29+%2F+%283+-+4k%5E2%29%5E2+*+%2820k+-+6+-+4Sqrt%5B3%5DSqrt%5B7+-+5k%5D%29%5E2.
Sada je jasno da je točki najbliža točka (odgovara slučaju ) i da je njihova udaljenost .
Ocjene: (1)
Komentari:
abulj, 7. kolovoza 2012. 16:13
pbakic, 27. svibnja 2012. 13:53
U svakom slučaju, bez jačih tehnika ne ide? Da su brojevi drukčiji, možda bismo i uspjeli...
Ni meni nije uspjelo nešto lijepo... Probao sam s Lagrangeovim multiplikatorima (točno ovakvi zadaci dođu na kolokvijima na drugoj godini), ali opet ispadne dosta ružan sustav u kojem u najboljem slučaju pogađam rješenja kubne jednadžbe
Zadnja promjena: pbakic, 27. svibnja 2012. 13:54
ikicic, 23. svibnja 2012. 21:47