Točno
23. veljače 2016. 13:32 (9 godine)
Sakrij rješenje
Sakrij rješenje
Upozorenje: Ovaj zadatak još niste riješili!
Kliknite ovdje kako biste prikazali rješenje.
Kliknite ovdje kako biste prikazali rješenje.
Očito je
. Pretpostavimo da je
neparan. Tada u zadanoj jednakosti na lijevoj strani imamo zbroj četiri neparna broja (dakle, paran broj), a na desnoj neparan broj. Kontradikcija. Zato je
paran, pa je
. Pretpostavimo da je
. Tada je
i
pa slijedi
. No, kvadrat prirodnog broja može davati samo ostatke 0 i 1 pri dijeljenju s 4. Zato
. Potpuno analogno dobijemo i
.
Iz prethodnog razmatranja zaključujemo kako
mora biti jednak nekom (neparnom) prostom broju
(u suprotnom bi, zbog
, slijedilo da
ima prost djelitelj veći od 2 pa
ne bi bio treći najmanji djelitelj od
). Sada imamo
a budući da je
paran i
neparan, slijedi da
mora biti paran, tj.
. Uočimo da
ima sve proste faktore veće ili jednake
(u suprotnom
ne bi bio treći najmanji djelitelj od
). Pretpostavimo da
ima prost djelitelj
koji je strogo veći od
(uočimo da
mora biti neparan). Tada je
djelitelj od
koji je manji od
, pa bi četvrti najmanji djelitelj od
bio neparan. Kontradikcija, dakle,
je jedini prost djelitelj od
. Budući da je
četvrti najmanji djelitelj od
, slijedi
.
Dakle, imamo
. Budući da
dijeli
i
ne dijeli
, vidimo da
mora dijeliti
. Dakle,
i
je jedini broj s traženim svojstvom.










Iz prethodnog razmatranja zaključujemo kako




























Dakle, imamo








