Školjka
Tečajevi
MetaMath '24
Izbornik
Početna
Arhiva zadataka
Predavanja
Natjecanja
Tečajevi
Registracija
Prijava
Svi zadaci
Rješenja
Traži
Pomoć
O nama
« Vrati se
IMO Shortlist 1961 problem 2
1961
IMO
geo
shortlist
trokut
Let
,
,
be the sides of a triangle, and
its area. Prove:
In what case does equality hold?
%V0 Let $a$, $b$, $c$ be the sides of a triangle, and $S$ its area. Prove: $$a^{2} + b^{2} + c^{2}\geq 4S \sqrt {3}$$ In what case does equality hold?
Slični zadaci
Lista
Tekst
Dva stupca
Zadaci
#
Naslov
Oznake
Rj.
Kvaliteta
Težina
1157
IMO Shortlist 1961 problem 4
1961
IMO
geo
shortlist
trokut
1
1158
IMO Shortlist 1961 problem 5
1961
IMO
geo
shortlist
trokut
1
1159
IMO Shortlist 1961 problem 6
1961
IMO
geo
shortlist
trokut
1
1242
IMO Shortlist 1966 problem 59
1966
IMO
geo
shortlist
trokut
0
1535
IMO Shortlist 1979 problem 4
1979
IMO
geo
shortlist
trokut
0
1680
IMO Shortlist 1986 problem 17
1986
IMO
geo
shortlist
trokut
0