Školjka
Tečajevi
MetaMath '24
Izbornik
Početna
Arhiva zadataka
Predavanja
Natjecanja
Tečajevi
Registracija
Prijava
Svi zadaci
Rješenja
Traži
Pomoć
O nama
« Vrati se
IMO Shortlist 1966 problem 13
1966
alg
nejednakost
shortlist
Let
be positive real numbers. Prove the inequality
%V0 Let $a_1, a_2, \ldots, a_n$ be positive real numbers. Prove the inequality $$\binom n2 \sum_{i<j} \frac{1}{a_ia_j} \geq 4 \left( \sum_{i<j} \frac{1}{a_i+a_j} \right)^2$$
Slični zadaci
Lista
Tekst
Dva stupca
Zadaci
#
Naslov
Oznake
Rj.
Kvaliteta
Težina
1188
IMO Shortlist 1966 problem 5
1966
alg
nejednakost
shortlist
trigonometrija
1
1209
IMO Shortlist 1966 problem 26
1966
alg
nejednakost
shortlist
2
1794
IMO Shortlist 1990 problem 24
1990
alg
nejednakost
shortlist
14
1822
IMO Shortlist 1991 problem 24
1991
alg
nejednakost
shortlist
0
1823
IMO Shortlist 1991 problem 25
1991
alg
nejednakost
shortlist
0
1844
IMO Shortlist 1992 problem 17
1992
alg
invalid
nejednakost
niz
shortlist
tb
0