« Vrati se
Let ABCD and A^{\prime }B^{\prime}C^{\prime }D^{\prime } be two arbitrary parallelograms in the space, and let M, N, P, Q be points dividing the segments AA^{\prime }, BB^{\prime }, CC^{\prime }, DD^{\prime } in equal ratios.

a.) Prove that the quadrilateral MNPQ is a parallelogram.

b.) What is the locus of the center of the parallelogram MNPQ, when the point M moves on the segment AA^{\prime } ?

(Consecutive vertices of the parallelograms are labelled in alphabetical order.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1225IMO Shortlist 1966 problem 420
1227IMO Shortlist 1966 problem 440
1228IMO Shortlist 1966 problem 450
1229IMO Shortlist 1966 problem 460
1231IMO Shortlist 1966 problem 480
1233IMO Shortlist 1966 problem 500