« Vrati se
Prove the inequality

a.) \left( a_{1}+a_{2}+...+a_{k}\right) ^{2}\leq k\left(a_{1}^{2}+a_{2}^{2}+...+a_{k}^{2}\right) ,

where k\geq 1 is a natural number and a_{1}, a_{2}, ..., a_{k} are arbitrary real numbers.

b.) Using the inequality (1), show that if the real numbers a_{1}, a_{2}, ..., a_{n} satisfy the inequality

a_{1}+a_{2}+...+a_{n}\geq \sqrt{\left( n-1\right) \left(a_{1}^{2}+a_{2}^{2}+...+a_{n}^{2}\right) },

then all of these numbers a_{1}, a_{2}, \ldots, a_{n} are non-negative.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1188IMO Shortlist 1966 problem 51
1196IMO Shortlist 1966 problem 132
1794IMO Shortlist 1990 problem 2414
1822IMO Shortlist 1991 problem 240
1823IMO Shortlist 1991 problem 250
1844IMO Shortlist 1992 problem 170