Školjka
Tečajevi
MetaMath '24
Izbornik
Početna
Arhiva zadataka
Predavanja
Natjecanja
Tečajevi
Registracija
Prijava
Svi zadaci
Rješenja
Traži
Pomoć
O nama
« Vrati se
IMO Shortlist 1966 problem 30
1966
shortlist
Let
be a positive integer, prove that :
(a)
(b)
%V0 Let $n$ be a positive integer, prove that : (a) $\log_{10}(n + 1) > \frac{3}{10n} +\log_{10}n ;$ (b) $\log n! > \frac{3n}{10}\left( \frac 12+\frac 13 +\cdots +\frac 1n -1\right).$
Slični zadaci
Lista
Tekst
Dva stupca
Zadaci
#
Naslov
Oznake
Rj.
Kvaliteta
Težina
1225
IMO Shortlist 1966 problem 42
1966
niz
shortlist
tb
0
1227
IMO Shortlist 1966 problem 44
1966
shortlist
0
1228
IMO Shortlist 1966 problem 45
1966
shortlist
0
1229
IMO Shortlist 1966 problem 46
1966
shortlist
0
1231
IMO Shortlist 1966 problem 48
1966
shortlist
0
1233
IMO Shortlist 1966 problem 50
1966
shortlist
0