« Vrati se
Solve the equation |x^2 -1|+ |x^2 - 4| = mx as a function of the parameter m. Which pairs (x,m) of integers satisfy this equation ?

Slični zadaci

Let (a_n)^{\infty}_{n=1} be a sequence of integers with a_{n} < a_{n+1}, \quad \forall n \geq 1. For all quadruple (i,j,k,l) of indices such that 1 \leq i < j \leq k < l and i + l = j + k we have the inequality a_{i} + a_{l} > a_{j} + a_{k}. Determine the least possible value of a_{2008}.
neka je n, n \in \mathbb{N}, te x_1, x_2, \dots , x_n, y_1, y_2, \dots, y_n \in \mathbb{C}
postoji li k, k \in \mathbb{N}, takav da se iz jednakosti x_1 + x_2 + \dots + x_n = y_1 + y_2 + \dots + y_n x_1^2 + x_2^2 + \dots + x_n^2 = y_1^2 + y_2^2 + \dots + y_n^2  \vdots x_1^k + x_2^k + \dots + x_n^k = y_1^k + y_2^k + \dots + y_n^k
moze zakljuciti da su "x-evi" do na permutaciju jednaki "y-ima". ako postoji, koji je najmanji takav k.

dodatno, postoji li l, l \in \mathbb{N} takav da se za proizvoljnih l brojeva a_1, a_2, \dots , a_l \in \mathbb{Z} \setminus \{0\}, takvih da \forall i \neq j vrijedi M(a_i, a_j) = 1 te odgovarajucih jednakosti

x_1^{a_1} + x_2^{a_1} + \dots + x_n^{a_1} = y_1^{a_1} + y_2^{a_1} + \dots + y_n^{a_1} x_1^{a_2} + x_2^{a_2} + \dots + x_n^{a_2} = y_1^{a_2} + y_2^{a_2} + \dots + y_n^{a_2}  \vdots x_1^{a_l} + x_2^{a_l} + \dots + x_n^{a_l} = y_1^{a_l} + y_2^{a_l} + \dots + y_n^{a_l}
moze zakljuciti da su "x-evi" do na permutaciju jednaki "y-ima". ako postoji, koji je najmanji takav l.

takoder, uz pretpostavku x_1, x_2, \dots , x_n, y_1, y_2, \dots, y_n \in \mathbb{R}^+, smijemo li uzeti a_1, a_2, \dots , a_l \in \mathbb{R} \setminus \{0\}?
Let f and g be two integer-valued functions defined on the set of all integers such that

(a) f(m + f(f(n))) = -f(f(m+ 1) - n for all integers m and n;
(b) g is a polynomial function with integer coefficients and g(n) = g(f(n)) \forall n \in \mathbb{Z}.
A function f defined on the positive integers (and taking positive integers values) is given by:
\begin{matrix} f(1) = 1, f(3) = 3 \\ f(2n) = f(n) \\ f(4n + 1) = 2f(2n + 1) - f(n) \\ f(4n + 3) = 3f(2n + 1) - 2f(n)\text{,} \end{matrix}
for all positive integers n. Determine with proof the number of positive integers \leq 1988 for which f(n) = n.
Let f(n) be a function defined on the set of all positive integers and having its values in the same set. Suppose that f(f(n) + f(m)) = m + n for all positive integers n,m. Find the possible value for f(1988).
(FRA 5) Let \alpha(n) be the number of pairs (x, y) of integers such that x+y = n, 0 \le y \le x, and let \beta(n) be the number of triples (x, y, z) such thatx + y + z = n and 0 \le z \le y \le x. Find a simple relation between \alpha(n) and the integer part of the number \frac{n+2}{2} and the relation among \beta(n), \beta(n -3) and \alpha(n). Then evaluate \beta(n) as a function of the residue of n modulo 6. What can be said about \beta(n) and 1+\frac{n(n+6)}{12}? And what about \frac{(n+3)^2}{6}?
Find the number of triples (x, y, z) with the property x+ y+ z \le n, 0 \le z \le y \le x as a function of the residue of n modulo 6.What can be said about the relation between this number and the number \frac{(n+6)(2n^2+9n+12)}{72}?