Prove that for every natural number
![n](/media/m/a/e/5/ae594d7d1e46f4b979494cf8a815232b.png)
, and for every real number
![x \neq \frac{k\pi}{2^t}](/media/m/8/8/4/884294c03c1996559bcbd160b77e20f4.png)
(
![t=0,1, \dots, n](/media/m/7/c/a/7cad982a8ce849c6a5aca4d85f3992fd.png)
;
![k](/media/m/f/1/3/f135be660b73381aa6bec048f0f79afc.png)
any integer)
%V0
Prove that for every natural number $n$, and for every real number $x \neq \frac{k\pi}{2^t}$ ($t=0,1, \dots, n$; $k$ any integer) $$\frac{1}{\sin{2x}}+\frac{1}{\sin{4x}}+\dots+\frac{1}{\sin{2^nx}}=\cot{x}-\cot{2^nx}$$