« Vrati se
Prove that
\frac{1}{3}n^2 + \frac{1}{2}n + \frac{1}{6} \geq (n!)^{\dfrac{2}{n}},
and let n \geq 1 be an integer. Prove that this inequality is only possible in the case n = 1.

Slični zadaci

Let n \geq 2, n \in \mathbb{N} and let p, a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n \in \mathbb{R} satisfying \frac{1}{2} \leq p \leq 1, 0 \leq a_i, 0 \leq b_i \leq p, i = 1, \ldots, n, and \sum^n_{i=1} a_i = \sum^n_{i=1} b_i. Prove the inequality: \sum^n_{i=1} b_i \prod^n_{j = 1, j \neq i} a_j \leq \frac{p}{(n-1)^{n-1}}.
Prove the following inequality:
\prod^k_{i=1} x_i \cdot \sum^k_{i=1} x^{n-1}_i \leq \sum^k_{i=1} x^{n+k-1}_i, where x_i > 0, k \in \mathbb{N}, n \in \mathbb{N}.
Prove that for arbitrary positive numbers the following inequality holds
\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \leq \frac{a^8 + b^8 + c^8}{a^3b^3c^3}.
Prove that for an arbitrary pair of vectors f and g in the space the inequality
af^2 + bfg +cg^2 \geq 0
holds if and only if the following conditions are fulfilled:
a \geq 0, \quad c \geq 0, \quad 4ac \geq b^2.
Prove the inequality

a.) \left( a_{1}+a_{2}+...+a_{k}\right) ^{2}\leq k\left(a_{1}^{2}+a_{2}^{2}+...+a_{k}^{2}\right) ,

where k\geq 1 is a natural number and a_{1}, a_{2}, ..., a_{k} are arbitrary real numbers.

b.) Using the inequality (1), show that if the real numbers a_{1}, a_{2}, ..., a_{n} satisfy the inequality

a_{1}+a_{2}+...+a_{n}\geq \sqrt{\left( n-1\right) \left(a_{1}^{2}+a_{2}^{2}+...+a_{n}^{2}\right) },

then all of these numbers a_{1}, a_{2}, \ldots, a_{n} are non-negative.
Let a_1, a_2, \ldots, a_n be positive real numbers. Prove the inequality
\binom n2 \sum_{i<j} \frac{1}{a_ia_j} \geq 4 \left( \sum_{i<j} \frac{1}{a_i+a_j} \right)^2