Školjka
Tečajevi
MetaMath '24
Izbornik
Početna
Arhiva zadataka
Predavanja
Natjecanja
Tečajevi
Registracija
Prijava
Svi zadaci
Rješenja
Traži
Pomoć
O nama
« Vrati se
IMO Shortlist 1967 problem 3
1967
alg
nejednakost
shortlist
Prove that for arbitrary positive numbers the following inequality holds
%V0 Prove that for arbitrary positive numbers the following inequality holds $$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \leq \frac{a^8 + b^8 + c^8}{a^3b^3c^3}.$$
Slični zadaci
Lista
Tekst
Dva stupca
Zadaci
#
Naslov
Oznake
Rj.
Kvaliteta
Težina
1248
IMO Shortlist 1967 problem 2
1967
alg
faktorijel
nejednakost
shortlist
2
1249
IMO Shortlist 1967 problem 3
1967
alg
nejednakost
shortlist
trigonometrija
0
1264
IMO Shortlist 1967 problem 5
1967
alg
nejednakost
shortlist
1
1287
IMO Shortlist 1967 problem 6
1967
alg
nejednakost
shortlist
0
1822
IMO Shortlist 1991 problem 24
1991
alg
nejednakost
shortlist
0
1823
IMO Shortlist 1991 problem 25
1991
alg
nejednakost
shortlist
0