Školjka
Tečajevi
MetaMath '24
Izbornik
Početna
Arhiva zadataka
Predavanja
Natjecanja
Tečajevi
Registracija
Prijava
Svi zadaci
Rješenja
Traži
Pomoć
O nama
« Vrati se
IMO Shortlist 1969 problem 15
1969
shortlist
tb
Let
be nonnegative integers. Prove that
, where
%V0 $(CZS 4)$ Let $K_1,\cdots , K_n$ be nonnegative integers. Prove that $K_1!K_2!\cdots K_n! \ge \left[\frac{K}{n}\right]!^n$, where $K = K_1 + \cdots + K_n$
Slični zadaci
Lista
Tekst
Dva stupca
Zadaci
#
Naslov
Oznake
Rj.
Kvaliteta
Težina
1364
IMO Shortlist 1969 problem 34
1969
shortlist
tb
0
1373
IMO Shortlist 1969 problem 43
1969
shortlist
tb
1
1378
IMO Shortlist 1969 problem 48
1969
shortlist
tb
0
1384
IMO Shortlist 1969 problem 54
1969
shortlist
tb
1
1392
IMO Shortlist 1969 problem 62
1969
shortlist
tb
0
1393
IMO Shortlist 1969 problem 63
1969
shortlist
tb
0