« Vrati se
(SWE 2) For each \lambda (0 < \lambda < 1 and \lambda = \frac{1}{n} for all n = 1, 2, 3, \cdots), construct a continuous function f such that there do not exist x, y with 0 < \lambda < y = x + \lambda \le 1 for which f(x) = f(y).

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1978IMO Shortlist 1997 problem 221
1829IMO Shortlist 1992 problem 24
1788IMO Shortlist 1990 problem 180
1748IMO Shortlist 1989 problem 101
1685IMO Shortlist 1987 problem 10
1557IMO Shortlist 1979 problem 260