%V0
$(USS 3)$ $(a)$ Prove that if $0 \le a_0 \le a_1 \le a_2,$ then $(a_0 + a_1x - a_2x^2)^2 \le (a_0 + a_1 + a_2)^2\left(1 +\frac{1}{2}x+\frac{1}{3}x^2+\frac{1}{2}x^3+x^4\right)$
$(b)$ Formulate and prove the analogous result for polynomials of third degree.