« Vrati se
Let M be an interior point of the tetrahedron ABCD. Prove that \stackrel{\longrightarrow }{MA} \text{vol}(MBCD) + \stackrel{\longrightarrow }{MB} \text{vol}(MACD) + \stackrel{\longrightarrow }{MC} \text{vol}(MABD) + \stackrel{\longrightarrow }{MD} \text{vol}(MABC) = 0\text{.}
(\text{vol}(PQRS) denotes the volume of the tetrahedron PQRS).

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1267IMO Shortlist 1967 problem 20
1276IMO Shortlist 1967 problem 10
1651IMO Shortlist 1985 problem 100
1682IMO Shortlist 1986 problem 190
1684IMO Shortlist 1986 problem 210
1789IMO Shortlist 1990 problem 190