« Vrati se
Consider a sequence of polynomials P_0(x), P_1(x), P_2(x), \ldots, P_n(x), \ldots, where P_0(x) = 2, P_1(x) = x and for every n \geq 1 the following equality holds:
P_{n+1}(x) + P_{n-1}(x) = xP_n(x).
Prove that there exist three real numbers a, b, c such that for all n \geq 1,
(x^2 - 4)[P_n^2(x) - 4] = [aP_{n+1}(x) + bP_n(x) + cP_{n-1}(x)]^2.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1247IMO Shortlist 1967 problem 10
1294IMO Shortlist 1967 problem 10
1304IMO Shortlist 1967 problem 50
1349IMO Shortlist 1969 problem 190
1845IMO Shortlist 1992 problem 180
2518skakavac 2012 trece kolo ss3 10