« Vrati se
Find all positive real solutions to: \begin{eqnarray*}
(x_1^2-x_3x_5)(x_2^2-x_3x_5) &\le& 0 \\
(x_2^2-x_4x_1)(x_3^2-x_4x_1) &\le& 0 \\
(x_3^2-x_5x_2)(x_4^2-x_5x_2) &\le& 0 \\
(x_4^2-x_1x_3)(x_5^2-x_1x_3) &\le& 0 \\
(x_5^2-x_2x_4)(x_1^2-x_2x_4) &\le& 0
\end{eqnarray*}

Slični zadaci

An n \times n matrix whose entries come from the set S = \{1, 2, \ldots , 2n - 1\} is called a silver matrix if, for each i = 1, 2, \ldots , n, the i-th row and the i-th column together contain all elements of S. Show that:

(a) there is no silver matrix for n = 1997;

(b) silver matrices exist for infinitely many values of n.
Determine all values of x in the interval 0 \leq x \leq 2\pi which satisfy the inequality 2 \cos{x} \leq \sqrt{1+\sin{2x}}-\sqrt{1-\sin{2x}} \leq \sqrt{2}.
Find all solutions x_1, x_2, x_3, x_4, x_5 of the system x_5+x_2=yx_1 x_1+x_3=yx_2 x_2+x_4=yx_3 x_3+x_5=yx_4 x_4+x_1=yx_5 where y is a parameter.
Consider the cube ABCDA'B'C'D' (with face ABCD directly above face A'B'C'D').

a) Find the locus of the midpoints of the segments XY, where X is any point of AC and Y is any piont of B'D';

b) Find the locus of points Z which lie on the segment XY of part a) with ZY=2XZ.
Let a,b,c be real numbers. Consider the quadratic equation in \cos{x} a \cos^2{x}+b \cos{x}+c=0. Using the numbers a,b,c form a quadratic equation in \cos{2x} whose roots are the same as those of the original equation. Compare the equation in \cos{x} and \cos{2x} for a=4, b=2, c=-1.
For what real values of x is \sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=A given

a) A=\sqrt{2};

b) A=1;

c) A=2,

where only non-negative real numbers are admitted for square roots?