« Vrati se
We consider two sequences of real numbers x_{1} \geq x_{2} \geq \ldots \geq x_{n} and \ y_{1} \geq y_{2} \geq \ldots \geq y_{n}. Let z_{1}, z_{2}, .\ldots, z_{n} be a permutation of the numbers y_{1}, y_{2}, \ldots, y_{n}. Prove that \sum \limits_{i=1}^{n} ( x_{i} -\ y_{i} )^{2} \leq \sum \limits_{i=1}^{n} ( x_{i} - z_{i})^{2}.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1977IMO Shortlist 1997 problem 210
1653IMO Shortlist 1985 problem 120
1241IMO Shortlist 1966 problem 580
1175IMO Shortlist 1964 problem 32
1167IMO Shortlist 1963 problem 11
1147IMO Shortlist 1960 problem 110