Školjka
Tečajevi
MetaMath '24
Izbornik
Početna
Arhiva zadataka
Predavanja
Natjecanja
Tečajevi
Registracija
Prijava
Svi zadaci
Rješenja
Traži
Pomoć
O nama
« Vrati se
IMO Shortlist 1975 problem 7
1975
shortlist
Prove that from
it follows that
%V0 Prove that from $x + y = 1 \ (x, y \in \mathbb R)$ it follows that $$x^{m+1} \sum_{j=0}^n \binom{m+j}{j} y^j + y^{n+1} \sum_{i=0}^m \binom{n+i}{i} x^i = 1 \qquad (m, n = 0, 1, 2, \ldots ).$$
Slični zadaci
Lista
Tekst
Dva stupca
Zadaci
#
Naslov
Oznake
Rj.
Kvaliteta
Težina
1237
IMO Shortlist 1966 problem 54
1966
shortlist
0
1240
IMO Shortlist 1966 problem 57
1966
shortlist
0
1259
IMO Shortlist 1967 problem 3
1967
shortlist
1
1472
IMO Shortlist 1975 problem 1
1975
shortlist
0
1474
IMO Shortlist 1975 problem 3
1975
shortlist
0
1485
IMO Shortlist 1975 problem 14
1975
shortlist
0