« Vrati se
Prove that from x + y = 1 \  (x, y \in \mathbb R) it follows that
x^{m+1} \sum_{j=0}^n \binom{m+j}{j} y^j + y^{n+1} \sum_{i=0}^m \binom{n+i}{i} x^i = 1 \qquad (m, n = 0, 1, 2, \ldots ).

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1485IMO Shortlist 1975 problem 140
1474IMO Shortlist 1975 problem 30
1472IMO Shortlist 1975 problem 10
1259IMO Shortlist 1967 problem 31
1240IMO Shortlist 1966 problem 570
1237IMO Shortlist 1966 problem 540