« Vrati se
We consider the following system with q=2p: \begin{align*}
a_{11}x_{1}+\ldots&+a_{1q}x_{q}=0,\\
a_{21}x_{1}+\ldots&+a_{2q}x_{q}=0,\\
&\vdots \\
a_{p1}x_{1}+\ldots&+a_{pq}x_{q}=0,\\
\end{align*} in which every coefficient is an element from the set \{-1,\,0,\,1\} . Prove that there exists a solution x_{1}, \ldots, x_{q} for the system with the properties:

a.) all x_{j}, j=1,\ldots,q are integers;
b.) there exists at least one j for which x_{j} \neq 0;
c.) |x_{j}| \leq q for any j=1, \ldots ,q.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1960IMO Shortlist 1997 problem 42
1660IMO Shortlist 1985 problem 190
1245IMO Shortlist 1966 problem 620
1179IMO Shortlist 1965 problem 22
1170IMO Shortlist 1963 problem 41
1154IMO Shortlist 1961 problem 13