« Vrati se
Let a,b,A,B be given reals. We consider the function defined by f(x) = 1 - a \cdot \cos(x) - b \cdot \sin(x) - A \cdot \cos(2x) - B \cdot \sin(2x). Prove that if for any real number x we have f(x) \geq 0 then a^2 + b^2 \leq 2 and A^2 + B^2 \leq 1.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1151IMO Shortlist 1960 problem 51
1459IMO Shortlist 1973 problem 170
1499IMO Shortlist 1977 problem 17
1706IMO Shortlist 1987 problem 220
1833IMO Shortlist 1992 problem 68
1960IMO Shortlist 1997 problem 42