« Vrati se
Let n be an integer greater than 1. Define

x_1 = n, y_1 = 1, x_{i+1} =\left[ \frac{x_i+y_i}{2}\right] , y_{i+1} = \left[ \frac{n}{x_{i+1}}\right], \qquad \text{for }i =...

where [z] denotes the largest integer less than or equal to z. Prove that
\min \{x_1, x_2, \ldots,  x_n \} =[ \sqrt n ]

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1259IMO Shortlist 1967 problem 31
1240IMO Shortlist 1966 problem 570
1237IMO Shortlist 1966 problem 540
1235IMO Shortlist 1966 problem 520
1234IMO Shortlist 1966 problem 510
1233IMO Shortlist 1966 problem 500